Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
As a growing number of companies reject intellectual property (IP) monopoly-based business models to embrace libre product development of free and open source hardware and software, there is an urgent need to refurbish the instruments of university-corporate research partnerships. These partnerships generally use a proprietary standard research agreement (PSRA), which for historical reasons contains significant IP monopoly language and restrictions for both the company and the university. Such standard research agreements thus create an artificial barrier to innovation as both companies using a libre model and universities they wish to collaborate with must invest significantly to restructure the contracts. To solve this problem, this article provides a new Sponsored Libre Research Agreement (SLRA). The differences between the agreements are detailed. The advantages of using an SLRA are provided for any type of company and include: (1) minimizing research investments on reporting requirements; (2) reducing delays related to confidentiality and publication embargos; and (3) reducing both transaction and legal costs as well as research time losses associated with IP. Moving to libre agreements both speeds up and reduces costs for setting up collaborative research. Under the SLRA, university researchers can spend more time innovating for the same investment.
Although theoretically the patent system is meant to bolster innovation, the current United States Patent and Trademark Office (USPTO) is cumbersome and involves a significant time investment to locate inactive patents less than 20 years old. This article reports on the development of an open source database to find these public domain ideas. First, a search strategy is explained. Then the operation and use of free and open source software are detailed to meet the needs of open hardware innovators. Finally, a case study is presented to demonstrate the utility of the approach with 3-D printing. The results showed how the Free Inactive Patent Search enables users to search using plain language text to find public domain concepts and then provides a hyperlinked list of ideas that takes users to the USPTO database for the patent for more information. All of the source code to operate the search and the website are open source themselves and provided in the public domain for free. In the case study on 3-D printing the time to identify public domain patents was cut by a factor of more than 1500. This tool has the potential for accelerating the development of open hardware technologies to create high value for the public.
The articles in this issue look at how the development and use of free and open source hardware (FOSH or simply “open hardware”) are changing the face of science, engineering, business, and law. Free and open source software (FOSS) has proven very successful and now dominates the development of software on a global scale. It is available in source code (open source) and can be used, studied, copied, modified, and redistributed either without restriction or with restrictions only to ensure that further recipients have the same open source rights. Similarly, FOSH provides the “code” for hardware—including the bill of materials, schematics, instructions, computer-aided designs, and other information needed to recreate a physical artifact. Use of FOSH can improve product innovation in a wide range of fields. In this issue authors from a variety of disciplines and work environments discuss how this open model of innovation will drive the future of engineering. First, Alicia Gibb, founder and executive director of the Open Source Hardware Association (OSHWA) and director of the ATLAS1 Blow Things Up (BTU) Lab at the University of Colorado Boulder, argues that hardware is the next step to open sourcing everything. She touches on intellectual property (IP) issues, cites the benefits of open source hardware, introduces and explains the role of OSHWA, and hints at the future of open hardware. The open source paradigm is already making deep inroads in the hardware space in 3D printing. With the development of the open source RepRap project (a 3D printer that can print itself) the cost of 3D printers has dropped to a point where nearly anyone can afford one for rapid prototyping and small batch manufacturing. Ben Malouf and Harris Kenny of Aleph Objects describe their company’s approach to the use of open hardware in every aspect of their business to create the popular Lulzbot 3D printer. Their primary product is open—and consistently wins one of the top spots in Make: Magazine’s annual 3D printer shootout, ahead of proprietary 3D printers from much larger companies with far greater resources. Lulzbot printers, and those of many other manufacturers, are rapidly increasing in sales as the number of free and open source 3D printable designs erupts on the Web, making distributed manufacturing a reality. In this context, law professor Lucas Osborn at the Campbell University School of Law takes us on a deep dive into how IP law will need to change in this new 3D printing era. After summarizing the basics of IP law and explaining why it was created, he discusses how it could both benefit and hinder 3D printing technology. His arguments will challenge readers independent of their views on patent law. For those with conventional IP leanings, he shows how IP law can hinder innovation. For those born in the Internet age, where sharing is second nature and little thought is given to licenses as long as the code is posted on Github, he offers some important lessons. He ends with a challenge for engineers to make more of an effort in helping form IP law that will benefit innovation. If these lessons on IP and open hardware replication with 3D printers are turned to experimental research in science and engineering, there is an important opportunity to radically reduce the costs of experimental research while improving it. In the next article I argue that by harnessing a scalable open source method, federal funding is spent just once for the development of scientific equipment and then a return on this investment (ROI) is realized by digital replication of scientific devices for only the costs of materials. With numerous examples I show that the ROI climbs into the thousands of percent while accelerating any research that the open paradigm touches. To harness this opportunity, I propose four straightforward and negative-net-cost policies to support FOSH development and improve access to scientific tools in the United States. The policies will directly save millions in research and STEM education expenditures, while providing researchers and students access to better equipment, which will promote advances in technology and concomitant benefits for the American economy. Thinking about the future and the changes needed to support this development in STEM education, AnnMarie Thomas and Deb Besser of the St. Thomas School of Engineering consider how engineers and engineering educators can use maker methods to introduce students to engineering and build their technological literacy. They show that the maker movement is closely tied to open hardware and sharing as well as the traits of successful engineers. Makerspaces and fabrication (fab) labs (what Gibb calls hackerspaces) are physical hubs of the maker culture. Although these trends are clearly important for the United States, this cultural change and open hardware ethos can have dramatic impacts in the developing world. Matthew Rogge, Melissa Menke, and William Hoyle of TechforTrade explain the potential for open source and 3D printing to produce many needed items in low-resource settings, where lack of infrastructure makes local production impractical and high tariffs, unreliable supply chains, and economic instability make importation costly. Saving 90 percent on medical or scientific tools is nice in my lab, for instance, but it literally saves lives in a developing world context. The issue concludes with an op-ed by Tom Callaway, a senior software engineer at Red Hat, Inc., an open source software company with revenue over $2 billion last year (up 15 percent year over year). What makes this business accomplishment so impressive is that all of the company’s software products are available for free. Although old ways of thinking demand that companies secure a monopoly and certainly not give away “intellectual property” for free, Red Hat’s success comes from offering its customers support, collaboration, control, and a high-quality product. Tom argues that the proven open source software mentality is porting to hardware, opening up incredible opportunities for humanity. He concludes, “open source and open innovation work…. They also empower society and make it possible to push the limits of what is possible. When the barriers to collaboration are lifted, people can accomplish incredible things.” As all of the articles show, open source tools in the hands of this and future generations of engineers will be incredible indeed.
2020 •
Distributed digital manufacturing offers a solution to medical supply and technology shortages during pandemics. To prepare for the next pandemic, this study reviews the state-of-the-art for open hardware designs needed in a COVID-19-like pandemic. It evaluates the readiness of the top twenty technologies requested by the Government of India. The results show that the majority of the actual medical products have had some open source development, however, only 15% of the supporting technologies that make the open source device possible are freely available. The results show there is still considerable work needed to provide open source paths for the development of all the medical hardware needed during pandemics. Five core areas of future work are discussed that include: i) technical development of a wide-range of open source solutions for all medical supplies and devices, ii) policies that protect the productivity of laboratories, makerspaces and fabrication facilities during a pandemic, as well as iii) streamlining the regulatory process, iv) developing Good-Samaritan laws to protect makers and designers of open medical hardware, as well as to compel those with knowledge that will save lives to share it, and v) requiring all citizen-funded research to be released with free and open source licenses.
This Article provocatively asserts that lawmakers should weaken patents significantly—by between 25% and 50%. The primary impetus for this conclusion is the underappreciated effects of new and emerging technologies, including three-dimensional printing, synthetic biology, and cloud computing. These and other technologies are rapidly decreasing the costs of each stage of the innovation cycle: from basic research, through inventing and prototyping, to marketing and distribution. The primary economic theories supporting patent law hold that inventors and innovators need patents to recoup the costs associated with research, inventing, and commercializing. Because new technologies have begun—and will continue—to dramatically decrease these costs, the case for weakening patents is ripe for analysis.
Distributed digital manufacturing of free and open-source scientific hardware (FOSH) used for scientific experiments has been shown to in general reduce the costs of scientific hardware by 90–99%. In part due to these cost savings, the manufacturing of scientific equipment is beginning to move away from a central paradigm of purchasing proprietary equipment to one in which scientists themselves download open-source designs, fabricate components with digital manufacturing technology, and then assemble the equipment themselves. This trend introduces a need for new formal design procedures that designers can follow when targeting this scientific audience. This study provides five steps in the procedure, encompassing six design principles for the development of free and open-source hardware for scientific applications. A case study is provided for an open-source slide dryer that can be easily fabricated for under $20, which is more than 300 times less than some commercial alternatives. The bespoke design is parametric and easily adjusted for many applications. By designing using open-source principles and the proposed procedures, the outcome will be customizable, under control of the researcher, less expensive than commercial options, more maintainable, and will have many applications that benefit the user since the design documentation is open and freely accessible.
The rise of Free and Open Source models for software development has catalyzed the growth of Free and Open Source Hardware (also known as " Libre Hardware "). Libre hardware is gaining significant traction in the scientific hardware community, where there is evidence that open development creates both technically superior and far less expensive scientific equipment than proprietary models. In this article, the evidence is reviewed and a collection of examples of business models is developed to service scientists who have the option to manufacture their own equipment using Open Source designs. Profitable Libre Hardware business models are reviewed, which includes kit, specialty component, and calibration suppliers for makers. The results indicate that Libre Hardware businesses should target technically sophisticated customers first and, as usability matures, target expanded markets of conventional consumers.
Barriers to inventing electronic devices involve challenges of iterating electronic designs due to long lead times for professional circuit board milling or high costs of commercial milling machines. To overcome these barriers, this study provides open source (OS) designs for a low-cost circuit milling machine. First, design modifications for mechanical and electrical subsystems of the OS Distributed 3-D (D3D) Robotics prototyping system are provided. Next, Copper Carve, an OS custom graphical user interface, is developed to enable circuit board milling by implementing backlash and substrate distortion compensation. The performance of the OS D3D circuit mill is then quantified and validated for: positional accuracy, cut quality, feature accuracy, and distortion compensation. Finally, the return on investment is calculated for inventors using it. The results show by properly compensating for motion inaccuracies with Copper Carve, the machine achieves a motion resolution of 10 microns, which is more than adequate for most circuit designs. The mill is at least five times less expensive than all commercial alternatives and the material costs of the D3D mill are repaid from fabricating 20–43 boards. The results show that the OS circuit mill is of high-enough quality to enable rapid invention and distributed manufacturing of complex products containing custom electronics.
Journal of Peer Production
Transforming the productive base of the economy through the open design commons and distributed manufacturing2015 •
This policy paper explores the important role that the knowledge commons could play in the development of a social knowledge economy, focusing on the transformation of the secondary sector of the economy. Based on a discussion of two case studies on the open-source RepRap 3D printer and the Wikispeed car, which are paradigmatic of how the open design commons enable distributed and collaborative manufacturing structures, the paper derives several general principles for the development of public policy and puts forth a set of recommendations for kick-starting the transition process.

Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Innovation & Management Review
Open-source hardware as a model of technological innovation and academic entrepreneurship The Brazilian landscape2020 •
2018 •
Handbook of Research on Open Source …
Free Software Philosophy and Open Source2007 •
Handbook of research on …
Dependencies, networks, and priorities in an open source project2007 •
Handbook of Research …
Business models in open source software value creation2007 •
Handbook of Research on Open Source Software …
Reducing Transaction Costs with GLW InfrastructureHandbook of Research on Open …
An Innovative Desktop OSS Implementation in a School2007 •
… VIEWS TO OPEN SOURCE SOFTWARE BUSINESS
The value network approach to open source software businessMultidisciplinary Views to Open Source Software …
Sociology of Free and Open Source Software Communities: Motivations and Structures2019 •
IFIP — The International Federation for Information Processing
Legal issues for free and open source software in government2007 •
2015 •
Conference Proceedings of JITP 2010: The …
Promoting Openness by Patching European Directives: Internet-based Activism & EU Telecommunication Reform2010 •
California Management Review
Towards the (Strategic) Management of Intellectual Property2013 •
2010 •