Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
A promising method of enhancing the circular economy is distributed plastic recycling. In this study plastic waste is upcycled into 3-D printing filament with a recyclebot, which is an open source waste plastic extruder. The recyclebot is combined with an open source self-replicating rapid prototyper (RepRap) 3-D printer, to enable post-consumer ABS plastic filament from computer waste to be further upcycled into valuable consumer products pre-designed in the digital commons. The total electrical energy consumption for the combined process is monitored and an economic evaluation is completed. The coupled distributed recycling and manufacturing method for complex products reduces embodied energy by half, while reducing the cost of consumer products to pennies. This economic benefit provides an incentive for consumers to both home recycle and home manufacture, which tightens the loop on the circular economy by eliminating waste associated from transportation and retail. It is clear from the results that waste plastic can be significantly upcycled at the individual level using this commons-based approach. This tightening of the loop of the circular economy benefits the environment and sustainability as well as the economic stability of consumers/prosumers.
Journal of Manufacturing Science and Engineering
Open Source 3-D Filament Diameter Sensor for Recycling, Winding and Additive Manufacturing Machines2021 •
To overcome the challenge of upcycling plastic waste into 3D printing filament in the distributed recycling and additive manufacturing systems, this study designs, builds, tests and validates an open source filament diameter sensor for recycling and winding machines. The modular system for multi-axis optical control of the diameter of the recycled 3D-printer filament makes it possible to scan part of the surface of the 1 Corresponding author
Additive Manufacturing
Fab Lab Applications of Large-Area Waste Polymer-based Additive Manufacturing2019 •
Fab labs, which offer small-scale distributed digital fabrication, are forming a Green Fab Lab Network, which embraces concepts of an open source symbiotic economy and circular economy patterns. With the use of industrial 3D printers capable of fused particle fabrication/ fused granular fabrication (FPF/FGF) printing directly from waste plastic streams, green fab labs could act as defacto recycling centers for converting waste plastics into valuable products for their communities. Clear financial drivers for this process have not been studied in the past. Thus, in this study the Gigabot X, an open source industrial 3D printer, which has been shown to be amenable to a wide array of recyclables for FPF/FGF 3D printing, is used to evaluate this economic potential. An economic life cycle analysis of the technology is completed comprised of three cases studies using FPF for large sporting equipment products. Sensitivities are run on the electricity costs for operation, materials costs from various feed stocks and the capacity factors of the 3D printers. The results showed that FPF/FGF 3D printing is capable of energy efficient production of a wide range of large high-value sporting goods products. In all cases, a substantial economic savings was observed when comparing the materials and energy related costs to commercial goods (even for customized goods). Using locally-sourced shredded plastic represented not only the best environmental option, but also the most economic. For the case study products analyzed even the lowest capacity factor (starting only one print per week) represented a profit when comparing to high-end value products. For some products the profit potential and return on investment was substantial (e.g. over 1000%) for high capacity use of a Gigabot X. The results clearly show that open source industrial FPF/FGF 3D printers have significant economic potential when used as a distributed recycling/manufacturing system using recyclable feed stocks in the green fab lab context.
Journal of Manufacturing Science and Engineering
Open Source Filament Diameter Sensor for Recycling, Winding, and Additive Manufacturing Machines2021 •
To overcome the challenge of upcycling plastic waste into three-dimensional (3D) printing filament in the distributed recycling and additive manufacturing systems, this study designs, builds, tests, and validates an open-source filament diameter sensor for recycling and winding machines. The modular system for multi-axis optical control of the diameter of the recycled 3D-printer filament makes it possible to scan part of the surface of the processed filament, save the history of measurements along the entire length of the spool, as well as mark defective areas. The sensor is developed as an independent module and integrated into a recyclebot. It was tested on different kinds of polymers (acrylonitrile butadiene styrene (ABS), polylactide (PLA)), different sources of plastic, and different colors including clear plastic. The results were compared with the manual measurements, and the measurements obtained with a one-dimensional digital light caliper. The results found that the develo...
Journal of Cleaner Production
Plastic recycling in additive manufacturing: a systematic literature review and opportunities for the circular economy2020 •
The rapid technical evolution of additive manufacturing (AM) enables a new path to a circular economy using distributed recycling and production. This concept of Distributed Recycling via Additive Manufacturing (DRAM) is related to the use of recycled materials by means of mechanical recycling process in the 3D printing process chain. This paper aims to examine the current advances on thermoplastic recycling processes via additive manufacturing technologies. After proposing a closed recycling global chain for DRAM, a systematic literature review including 92 papers from 2009 to 2019 was performed using the scopus, web of science and springer databases. This work examines main topics from six stages (recovery, preparation, compounding, feedstock, printing, quality) of the proposed DRAM chain. The results suggested that few works have been done for the recovery and preparation stages, while a great progress has already been done for the other stages in order to validate the technical feasibility, environmental impact, and economic viability. Potential research paths in the pre-treatment of recycled material at local level and printing chain phases were identified in order to connect the development of DRAM with the circular economy ambition at micro, meso and macro level. The development of each stage proposed using the open source approach is a relevant path to scale DRAM to reach the full technical potential as a centerpiece of the circular economy.
Additive Manufacturing
Sustainability and Feasibility Assessment of Distributed E-Waste Recycling using Additive Manufacturing in a Bi-Continental Context2021 •
The most abundant e-waste plastic is acrylonitrile butadiene styrene (ABS), which is not typically processed by municipal programs and is equally one of the most popular 3-D printing filaments. This makes ABS a prime candidate for the distributed recycling for additive manufacturing (DRAM) approach, which has the potential to increase recycling rates by providing economic incentive for consumers to recycle. For DRAM to be globally applicable, this study investigates the role of the ABS e-waste source and processes to fabricate 3-D printing filament and printed components in both Australia and North America. The study used two different open source extruder systems to convert e-waste into 3D printer filament and for material quality to be assessed through standardized tensile and compression testing. Results revealed a modest reduction in mechanical properties compared to virgin ABS, highlighting the potential for recycled e-waste ABS for consumer and industrial uses. We also show DRAM can significantly reduce 3-D printer filament cost, however, carbon emissions from conversion underscored the need for technical efficiency improvements in electricity generating between countries. Finally, the variations in the properties of the ABS e-waste indicates the need for appropriate labeling of materials in order to advance recycling.
2019 •
Centrifuges are commonly required devices in medical diagnostics facilities as well as scientific laboratories. Although there are commercial and open source centrifuges, the costs of the former and the required electricity to operate the latter limit accessibility in resource-constrained settings. There is a need for low-cost, human-powered, verified, and reliable lab-scale centrifuges. This study provides the designs for a low-cost 100% 3-D printed centrifuge, which can be fabricated on any low-cost RepRap-class (self-replicating rapid prototyper) fused filament fabrication (FFF)-or fused particle fabrication (FPF)-based 3-D printer. In addition, validation procedures are provided using a web camera and free and open source software. This paper provides the complete open source plans, including instructions for the fabrication and operation of a hand-powered centrifuge. This study successfully tested and validated the instrument, which can be operated anywhere in the world with no electricity inputs, obtaining a radial velocity of over 1750 rpm and over 50 N of relative centrifugal force. Using commercial filament, the instrument costs about U.S. $25, which is less than half of all commercially available systems. However, the costs can be dropped further using recycled plastics on open source systems for over 99% savings. The results are discussed in the context of resource-constrained medical and scientific facilities.
Inventions
3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing2018 •
Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability to provide high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing and composite fabrication as well as precise fractional measuring back to filament. The US$185 open-source 3-D printable pelletizer chopper system was successfully fabricated and has a 0.5 kg/h throughput with one motor, and 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully printed directly via FGF as well as indirectly after being converted into high-tolerance filament in a recyclebot.
Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical energy use and filament consumption by mass to determine the cost to fabricate with a commercial RepRap 3-D printer. Printed parts were inspected and when necessary tested for their targeted application to ensure technical feasibility. Then, the experimentally measured cost to DIY manufacturers was compared to low and high market prices for comparable commercially available products. In addition, the markup and potential for long-term price declines was estimated for flexible filaments by converting thermoplastic elastomer (TPE) pellets into filament and reground TPE from a local recycling center into filament using an open source recyclebot. This study found that commercial flexible filament is economically as well as technically feasible for providing a means of distributed home-scale manufacturing of flexible products. The results found a 75% savings when compared to the least expensive commercially equivalent products and 92% when compared to high market priced products. Roughly, 160 flexible objects must be substituted to recover the capital costs to print flexible materials. However, as previous work has shown the Lulzbot Mini 3-D printer used in this study would provide more than a 100% ROI printing one object a week from hard thermoplastics, the upgrade needed to provide flexible filament capabilities can be accomplished with 37 average substitution flexible prints. This, again easily provides a triple digit return on investment printing one product a week. Although these savings, which are created by printing objects at home are substantial, the results also have shown the savings could be further increased to 93% when the use of a pellet extruder and TPE pellets, and 99% if recycled TPE filament made with a recyclebot is used. The capital costs of a recyclebot can be recovered in the manufacturing of about 9 kg of TPE filament, which can be accomplished in less than a week, enabling improved environmental impact as well as a strong financial return for heavy 3-D printer users.
Journal of Prosthetics and Orthotics
Open-Source Three-Dimensional Printable Infant Clubfoot Brace2019 •
Introduction Open-source, self-replicating rapid prototypers (RepRaps) have radically reduced the costs of three-dimensional (3D) printing while expanding its access. Three-dimensional printing's model of distributed manufacturing can produce medical technologies at significantly reduced costs. We investigate this potential by evaluating the viability of an open-source 3D printable infant clubfoot brace. Materials and Methods Starting with a list of key features present in currently available clubfoot braces, a 3D-printed clubfoot brace was developed in free and open-source CAD software (FreeCAD) to enable future customization. Polylactic acid, a biodegradable and recyclable bioplastic, was selected among the various commercial 3D printable materials based on strength and cost. Results The results show that the open-source clubfoot brace matches or surpasses the physical features and mechanical degrees of freedom of all commercial- and nonprofit-developed brace designs while substantially reducing the costs of the braces to hospitals and families. Conclusions The 3D-printed brace has the features of commercially available braces while significantly reducing the cost, making this clubfoot brace particularly appropriate for use in developing countries. In addition, the results indicated that this model of distributed manufacturing of medical technology is technically and economically appropriate through much of the Global South.
3D Printing and Additive Manufacturing
Mechanical Properties of Direct Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers2020 •
Fused filament fabrication (FFF) is the most common and widespread additive manufacturing (AM) technique, but it requires the formation of filament. Fused granular fabrication (FGF), where plastic granules are directly three-dimensional (3D) printed, has become a promising technique for the AM technology. FGF could be a key driver to promote further greening of distributed recycling thanks to the reduced melt solidification steps and elimination of the filament extruder system. However, only large-scale FGF systems have been tested for technical and economic viability of recycling plastic materials. The objective of this work is to evaluate the performance of the FFF and FGF techniques in terms of technical and economical dimensions at the desktop 3D printing scale. Recycled and virgin polylactic acid material was studied by using five different types of recycling feedstocks: commercial filament, pellets, distributed filament, distributed pellets, and shredded waste. The results showed that the mechanical properties from the FGF technique using same configurations showed no statistical differences to FFF samples. Nevertheless, the granulometry could have an influence on the reproducibility of the samples, which explains that the critical factor in this technology is to assure the material input in the feeding system. In addition, FGF costs per kg of material were reduced to less than 1 Euro/kg compared with more than 20 Euro/kg for commercial recycled filament. These results are encouraging to foster FGF printer diffusion among heavy users of 3D printers because of reducing the cost associated to the filament fabrication while ensuring the technical quality. This indicates the possibility of a new type of 3D printing recycled plastic waste that is more likely to drive a circular economy and distributed recycling.

Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Sustainable Materials and Technologies
Potential of Distributed Recycling from Hybrid Manufacturing of 3-D Printing and Injection Molding of Stamp Sand and Acrylonitrile Styrene Acrylate Waste Composite2020 •
2012 •
2012 •
2020 •
Forest Products Journal
Wood Furniture Waste-Based Recycled 3-D Printing Filament2018 •
2020 •
Additive Manufacturing
Towards Smart Monitored AM: Open Source in-Situ Layer-wise 3D Printing Image Anomaly Detection Using Histograms of Oriented Gradients and a Physics-Based Rendering Engine2022 •
Journal of Open Hardware
Open Source 3D Printed ISO 8655 Compliant Multichannel Pipette2022 •
2013 •
Additive Manufacturing
Open source computer vision-based layer-wise 3D printing analysis2020 •