Academia.eduAcademia.edu

Outline

Assessment of biowaste losses through unsound waste management practices in rural areas and the role of home composting

https://doi.org/10.1016/J.JCLEPRO.2016.10.163

Abstract

The paper examines the biowaste management issues across rural areas of Romania in the context of poor waste management infrastructure in the last decade (2003-2012). Biowaste is the main fraction of municipal waste, thus a proper management is a key challenge in order to sustain a bioeconomy in the near future. The amount of biowaste generated and uncollected by waste operators is generally uncontrolled disposed if not recovered through home composting. The paper points out the role of home composting in diverting the biowaste from wild dumps and landfills for the regions covered or not by waste collection services. Home composting and the biowaste losses are further assessed based on several scenarios (worse-case, pessimistic, realistic, optimistic) where the net loads of greenhouse gasses (GHG) are calculated at national and regional levels. The transition of home composting techniques, from open piles to plastic bins with respect to standard guidelines will improve the home composting performance in terms of compost quality and net GHG's savings, supporting a bio-based economy which will lead towards a sustainable rural development. Regional disparities are revealed across Romanian counties and the paper opens new research perspectives regarding which options should be adopted by counties and rural municipalities in the biowaste management process.

References (37)

  1. Adhikari, B.K., Tr emier, A., Barrington, S., Martinez, J., Daumoin, M., 2013. Gas emissions as influenced by home composting system configuration. J. Environ. Manag. 116, 163e171.
  2. Andersen, J.K., Boldrin, A., Christensen, T.H., Scheutz, C., 2010. Greenhouse gas emissions from home composting of organic household waste. Waste Manag. 30, 2475e2482.
  3. Barekova, A., Halajova, D., Barek, V., Halaj, P., 2013. Representation of biodegradable waste in municipal solid waste in rural landscape. In: 13th SGEM Geo- Conference on Ecology, Economics, Education and Legislation, June 16-22, 2013
  4. Conference Proceedings, vol. 1, pp. 833e838. http://dx.doi.org/10.5593/ sgem2013/be5.v1/s20.109.
  5. Bernardes, C., Günther, W.M.R., 2014. Generation of domestic solid waste in rural areas: case study of remote communities in the Brazilian amazon. Hum. Ecol. 42 (4), 617e623. http://dx.doi.org/10.1007/s10745-014-9679z.
  6. Blok, V., Long, T.B., Gaziulusoy, A.I., Ciliz, N., Lozano, R., Huisingh, D., Csutora, M., Boks, C., 2015. From best practices to bridges for a more sustainable future: advances and challenges in the transition to global sustainable production and consumption introduction to the ERSCP stream of the special volume. J. Clean. Prod. 108, 19e30.
  7. Boldrin, A., Andersen, J.K., Møller, J., Christensen, T.H., 2009. Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 27 (8), 800e812. http://dx.doi.org/10.1177/ 0734242X09345275.
  8. Section 1: wastes basics in solid wastes management. In: Burnley, S. (Ed.), 2014. Solid Wastes Management. John Wiley & Sons, Ltd, Chichester, UK. http:// dx.doi.org/10.1002/9781118863923.ch1.
  9. Ciubota-Rosie, C., Gavrilescu, M., Macoveanu, M., 2008. Biomass e an important renewable source of energy in Romania. Environ. Eng. Manag. J. 7 (5), 559e568.
  10. Ciuta, S., Apostol, T., Rusu, V., 2015. Urban and rural MSW stream characterization for separate collection improvement. Sustainability 7, 916e931. http:// dx.doi.org/10.3390/su7010916.
  11. Col on, J., Martínez-Blanco, J., Gabarrell, X., Artola, A., S anchez, A., Rieradevall, J., Font, X., 2010. Environmental assessment of home composting. Resour. Conserv. Recycl. 54, 893e904.
  12. de Besi, M., McCormick, K., 2015. Towards a bioeconomy in Europe: national, regional and industrial strategies. Sustainability 7, 10461e10478. http:// dx.doi.org/10.3390/su70810461.
  13. Ermolaev, E., Sundberg, C., Pell, M., Jonsson, H., 2014. Greenhouse gas emission from home composting in practice. Bioresour. Technol. 151, 174e182.
  14. European Commission, 2012. Innovating for Sustainable Growth: a Bioeconomy for Europe. Publication Office of the European Office, Luxembourg.
  15. Gavrilescu-Cailean, D., Teodosiu, C., 2016. An assessment of the Romanian solid waste management system based on sustainable development indicators. Sustain. Prod. Consum. http://dx.doi.org/10.1016/j.spc.2016.07.004. Government Decision no. 870/2013. National Waste Management Strategy in Romania 2014e2020.
  16. Havukainen, J., Zavarauskas, K., Denafas, G., Luoranen, M., Kahiluoto, H., Kuisma, M., Horttanainen, M., 2012. Potential of energy and nutrient recovery from biode- gradable waste by co-treatment in Lithuania. Waste Manag. Res. 30 (2), 181e189. http://dx.doi.org/10.1177/0734242X11427945.
  17. Hors ak, Z., H rebí cek, J., 2014. Biodegradable waste management in the Czech Re- public. A proposal for improvement. Pol. J. Environ. Stud. 23 (6), 2019e2025.
  18. Inglezakis, V., Amb arus ¸, M., Ardeleanu, N., Moustakas, K., Loizidou, M., 2016. Waste management in Romania: current data and application of a decision support tool. Environ. Eng. Manag. J. 15 (3), 511e519.
  19. Lim, S.L., Lee, L.H., Wu, T.Y., 2016. Sustainability of using composting and vermi- composting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 111, 262e278. http://dx.doi.org/10.1016/j.jclepro.2015.08.083.
  20. Lle o, T., Albacete, E., Barrena, R., Font, X., Artola, A., S anchez, A., 2013. Home and vermicomposting as sustainable options for boost management. J. Clean. Prod. 47, 70e76.
  21. Manfredi, S., Tonini, D., Christensen, T.H., Scharff, H., 2009. Landfilling of waste: accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 27 (8), 825e836. http://dx.doi.org/10.1177/0734242x09348529.
  22. Mateescu, C., B aran, G., B abut¸anu, C.A., 2008. Opportunities and barriers for development of biogas technologies in Romania. Environ. Eng. Manag. J. 7 (5), 603e607.
  23. Mihai, F.C., 2012. Improper household waste disposal in rural territory. Case Study: Neamt County, Romania. Bull. USAMV Agric. 69 (2), 15e20.
  24. Mihai, F.C., 2015. Spatial distribution of rural dumpsites parameters in Romania. Boll. Assoc. Ital. Cartogr. 154, 93e101. http://dx.doi.org/10.13137/2282-472x/ 11830.
  25. Mihai, F.C., 2016. East European recycling societies: the first steps of rural com- munities in Neamt County, Romania. In: Girotto, F. (Ed.), A Glance at the World, Waste Management, vol. 56, pp. IeIII. http://dx.doi.org/10.1016/S0956-053X(16) 30465-2.
  26. Ministry of Economy and Commerce and Bussiness Sector, 2010. Master Plan for Biomass (in Romanian) Partners. NL Agency, Netherlands. Enero (Romania) Available at: http://www.minind.ro/biomasa/Plan_de_Actiune_pentru_Biomasa. pdf (Accessed 17 May 2015). National Environment Protection Agency (NEPA), 2009. The State of the Environ- ment Report in 2008. National Environment Protection Agency (NEPA), 2013. The State of the Environ- ment Report in 2012.
  27. Ortner, M.E., Müller, W., Bockreis, A., 2013. The greenhouse gas and energy balance of different treatment concepts for bio-waste. Waste Manag. Res. 31 (10) http:// dx.doi.org/10.1177/0734242x13500518. Supplement 46e55.
  28. Panaretou, V., Malamis, D., Papadaskalopoulou, C., Sotiropoulos, A., Valta, K., Margaritis, M., Plevri, A., Moustakas, K., Loizidou, M., 2016. Implementation and evaluation of an integrated management scheme for MSW in selected com- munities in Tinos Island, Greece. Waste Biomass Valor. http://dx.doi.org/ 10.1007/s12649-016-9632-z.
  29. Regional Environmental Protection Agencies (REPA), 2006. Regional Waste Man- agement Plans.
  30. Scarlat, N., Blujdea, V., Dallemand, J.F., 2011. Assessment of the availability of agri- cultural and forest residues for bioenergy production in Romania. Biomass Bioenergy 35, 1995e2005.
  31. Scarlat, N., Dallemand, J.F., Monforti-Ferrario, F., Nita, V., 2015. The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ. Dev. 15, 3e34. http://dx.doi.org/10.1016/j.envdev.2015.03.006.
  32. Smith, S.R., Jasim, S., 2009. Small-scale home composting of biodegradable household waste: overview of key results from a 3-year research programme in West London. Waste Manag. Res. 27, 941e950. http://dx.doi.org/10.1177/ 0734242X09103828.
  33. Stanic-Maruna, I., Fellner, J., 2012. Solid waste management in Croatia in response to the European Landfill Directive. Waste Manag. Res. 30 (8), 825e838. http:// dx.doi.org/10.1177/0734242x12444897.
  34. Van Fan, Y., Lee, C.T., Kleme s, J.J., et al., 2016. Economic assessment system towards sustainable composting quality in the developing countries. Clean Technol. Environ. Policy. http://dx.doi.org/10.1007/s10098-016-1209-9.
  35. Vucijak, B., Kurtagi c, S.M., Silajd zi c, I., 2016. Multicriteria decision making in selecting best solid waste management scenario: a municipal case study from Bosnia and Herzegovina. J. Clean. Prod. 130, 166e174. http://dx.doi.org/10.1016/ j.jclepro.2015.11.030.
  36. W ojcik, G., Jacyno, M., Korkosz-Gebska, J., Krasuska, E., Oniszk-Popławska, A., Trebacz, D., 2014. Location selection analysis for biological treatment plants for municipal waste. J. Power Technol. 94 (1), 1e19.
  37. Wubben, E.F.M., Runge, N.A., Blok, V., 2012. From Waste to Profit. An inter- organisational perspecive on drivers for biomass valorization. J. Chain Netw. Sci. 12 (3), 261e272.