Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
Open-source technology not only has facilitated the expansion of the greater research community, but by lowering costs it has encouraged innovation and customizable design. The field of automated microscopy has continued to be a challenge in accessibility due the expense and inflexible, non-interchangeable stages. This paper presents a low-cost, open source microscope 3-D stage. A RepRap 3-D printer was converted to an optical microscope equipped with a customized, 3-D printed holder for a USB microscope. Precision measurements were determined to have an average error of 10 μm at the maximum speed and 27 μm at the minimum recorded speed. Accuracy tests yielded an error of 0.15%. The machine is a true 3-D stage and thus able to operate with USB microscopes or conventional desktop microscopes. It is larger than all commercial alternatives, and is thus capable of high depth images over unprecedented areas and complex geometries. The repeatibility is below 2-D microscope stages, but testing shows that it is adequate for the majority of scientific applications. The open source microscope stage costs less than 3% to 9% of the closest proprietary commercial stages. This extreme affordability vastly improves accessibility for 3-D microscopy throughout the world.
An open-source 3-D printable laboratory sample rotator mixer is developed here in two variants that allow users to opt for the level of functionality, cost saving and associated complexity needed in their laboratories. First, a laboratory sample rotator is designed and demonstrated that can be used for tumbling as well as gentle mixing of samples in a variety of tube sizes by mixing them horizontally, vertically, or any position in between. Changing the mixing angle is fast and convenient and requires no tools. This device is battery powered and can be easily transported to operate in various locations in a lab including desktops, benches, clean hoods, chemical hoods, cold rooms, glove boxes, incubators or biological hoods. Second, an on-board Arduino-based microcontroller is incorporated that adds the functionality of a laboratory sample shaker. These devices can be customized both mechanically and functionally as the user can simply select the operation mode on the switch or alter the code to perform custom experiments. The open source laboratory sample rotator mixer can be built by non-specialists for under US$30 and adding shaking functionality can be done for under $20 more. Thus, these open source devices are technically superior to the proprietary commercial equipment available on the market while saving over 90% of the costs.
3-D printing has potential to revolutionize manufacturing of customized low-cost scientific equipment, and numerous self-designed applications have already been realized and demonstrated. However, the applicability of 3-D printed devices to cleanrooms used for semiconductor processing is not as straightforward, as the controlled environment sets strict requirements for the allowed materials and items. This work investigates the opportunity to utilize 3-D printing in cleanrooms by analyzing three potentially suitable polymers (polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and polypropylene (PP)) for two applications that do not require particular chemical compatibility: a custom single wafer storage box and a wafer positioner for a metrology system. The designed equipment supplements commercial selection by introducing support for samples with non-standard shape or size and simultaneously reduces the price of often extensively expensive cleanroom equipment. The results show that the single wafer boxes 3-D printed from PLA and ABS generate as little particles as a commercial equivalent, whereas slightly more particles are found from a wafer stored in the self-printed PP box. Nevertheless, the number of particles on all wafers is in the same order of magnitude, indicating that 3-D printed boxes are not significant particle sources. The 3-D wafer positioner seems to cause a negligible particle increase on the manipulated wafer, while abrasion of the mechanical parts generate larger numbers of particles that may disperse in the environment. Regular cleaning of those parts is thus recommended, and applicability in a cleanroom environment will depend on the cleanliness constraints. Elemental analysis reveals that 3-D printed objects contain no other harmful metal impurities than those originating from colorants. Thus, 3-D printing filaments with natural color should be preferred for purposes, where metal contamination could be an issue, including semiconductor processing. Finally, 3-D printing filaments considered in this study are shown to be resistant to isopropanol and deionized water, which is critical for efficient cleaning for use of 3-D printed objects in cleanrooms. The results demonstrate that simple 3-D printed objects, such as wafer boxes or tweezers, are not notable contamination sources, and hence, are equally suitable for use in cleanrooms as the commercial equivalents.
There is an opportunity to radically reduce the costs of experimental research while improving it by supporting the development of free and open source hardware (FOSH) for science and engineering. By harnessing a scalable open source method, federal funding is spent just once for the development of scientific equipment and then a return on this investment is realized by direct digital replication of scientific devices for only the costs of materials. FOSH for science and engineering has been growing at a rapid pace and already supports many fields. Scaled peer production and digital replica-tion reduce traditional costs by 90–99 percent, making scientific equipment much more accessible not only for research but also for preparation of the next generation of scientists and engineers as research-grade tools are available for science, technology, engineering, and math (STEM) education. I propose four straightforward and negative-net-cost policies to support FOSH development and improve access to scientific tools in the United States. The policies will directly save millions in research and STEM education expenditures, while providing researchers and students access to better equipment, which will promote advances in technology and concomitant benefits for the US economy. Free and open source hardware can reduce research and education costs, increase access, and enhance scientific and technological progress.
Distributed digital manufacturing of free and open-source scientific hardware (FOSH) used for scientific experiments has been shown to in general reduce the costs of scientific hardware by 90–99%. In part due to these cost savings, the manufacturing of scientific equipment is beginning to move away from a central paradigm of purchasing proprietary equipment to one in which scientists themselves download open-source designs, fabricate components with digital manufacturing technology, and then assemble the equipment themselves. This trend introduces a need for new formal design procedures that designers can follow when targeting this scientific audience. This study provides five steps in the procedure, encompassing six design principles for the development of free and open-source hardware for scientific applications. A case study is provided for an open-source slide dryer that can be easily fabricated for under $20, which is more than 300 times less than some commercial alternatives. The bespoke design is parametric and easily adjusted for many applications. By designing using open-source principles and the proposed procedures, the outcome will be customizable, under control of the researcher, less expensive than commercial options, more maintainable, and will have many applications that benefit the user since the design documentation is open and freely accessible.
2018 •
Simple 3-D printable open source hardware designs have proven to be effective scientific instruments at low costs. Further development in this area is coupling open source electronics with 3-D printable mechanical components to make fully functional distributedly-manufactured mechatronic tools for science. One research area where such low-cost technology is needed is to characterize thin film anti-reflective coatings and transparent conducting oxides (TCOs) for the glass, mirror and solar photovoltaic industry whose transmission properties are angle dependent. To meet this research need a low-cost 3-D printable open source dual axis gimbal system is presented in this study. An Arduino based microcontroller is used to move the sample holder to the user specified angle where two stepper motors control the motion providing two degrees of freedom. The sample holder is made in such a way that samples can easily be mounted on it by two movable latches. The system was validated and characterized for: i) unidirectional accuracy, 1 Preprint: Nupur Bihari, Smruti Prasad Dash, Karankumar C. Dhankani, Joshua M. Pearce. 3-D printable open source dual axis gimbal system for optoelectronic measurements. Mechatronics 56, 175-187 (2018). DOI: https://doi.org/10.1016/j.mechatronics.2018.07.005 ii) repeatability, iii) backlash, iv) speed resolution and v) microstep size. Finally, the mechatronic system is tested for the intended application using a halogen light source and a spectrometer to measure transmission through glass TCO samples through a hemisphere. The system performed as expected has a unidirectional accuracy of 2.827°, repeatability of 1.585°, backlash error of 1.237°, maximum speed of 35.156° and a verifiable microstep size of 0.33°. Despite the highest mean squared errors, the open source gimbal system performed adequately while measuring transmission of radiation through glass with TCO coatings. This open source system also represents a 96% cost in savings as compared to the least expensive commercial variant. The high mean squared errors are offset by the cost of the system coupled with its open source nature that promotes further collaboration and hence, development.
The articles in this issue look at how the development and use of free and open source hardware (FOSH or simply “open hardware”) are changing the face of science, engineering, business, and law. Free and open source software (FOSS) has proven very successful and now dominates the development of software on a global scale. It is available in source code (open source) and can be used, studied, copied, modified, and redistributed either without restriction or with restrictions only to ensure that further recipients have the same open source rights. Similarly, FOSH provides the “code” for hardware—including the bill of materials, schematics, instructions, computer-aided designs, and other information needed to recreate a physical artifact. Use of FOSH can improve product innovation in a wide range of fields. In this issue authors from a variety of disciplines and work environments discuss how this open model of innovation will drive the future of engineering. First, Alicia Gibb, founder and executive director of the Open Source Hardware Association (OSHWA) and director of the ATLAS1 Blow Things Up (BTU) Lab at the University of Colorado Boulder, argues that hardware is the next step to open sourcing everything. She touches on intellectual property (IP) issues, cites the benefits of open source hardware, introduces and explains the role of OSHWA, and hints at the future of open hardware. The open source paradigm is already making deep inroads in the hardware space in 3D printing. With the development of the open source RepRap project (a 3D printer that can print itself) the cost of 3D printers has dropped to a point where nearly anyone can afford one for rapid prototyping and small batch manufacturing. Ben Malouf and Harris Kenny of Aleph Objects describe their company’s approach to the use of open hardware in every aspect of their business to create the popular Lulzbot 3D printer. Their primary product is open—and consistently wins one of the top spots in Make: Magazine’s annual 3D printer shootout, ahead of proprietary 3D printers from much larger companies with far greater resources. Lulzbot printers, and those of many other manufacturers, are rapidly increasing in sales as the number of free and open source 3D printable designs erupts on the Web, making distributed manufacturing a reality. In this context, law professor Lucas Osborn at the Campbell University School of Law takes us on a deep dive into how IP law will need to change in this new 3D printing era. After summarizing the basics of IP law and explaining why it was created, he discusses how it could both benefit and hinder 3D printing technology. His arguments will challenge readers independent of their views on patent law. For those with conventional IP leanings, he shows how IP law can hinder innovation. For those born in the Internet age, where sharing is second nature and little thought is given to licenses as long as the code is posted on Github, he offers some important lessons. He ends with a challenge for engineers to make more of an effort in helping form IP law that will benefit innovation. If these lessons on IP and open hardware replication with 3D printers are turned to experimental research in science and engineering, there is an important opportunity to radically reduce the costs of experimental research while improving it. In the next article I argue that by harnessing a scalable open source method, federal funding is spent just once for the development of scientific equipment and then a return on this investment (ROI) is realized by digital replication of scientific devices for only the costs of materials. With numerous examples I show that the ROI climbs into the thousands of percent while accelerating any research that the open paradigm touches. To harness this opportunity, I propose four straightforward and negative-net-cost policies to support FOSH development and improve access to scientific tools in the United States. The policies will directly save millions in research and STEM education expenditures, while providing researchers and students access to better equipment, which will promote advances in technology and concomitant benefits for the American economy. Thinking about the future and the changes needed to support this development in STEM education, AnnMarie Thomas and Deb Besser of the St. Thomas School of Engineering consider how engineers and engineering educators can use maker methods to introduce students to engineering and build their technological literacy. They show that the maker movement is closely tied to open hardware and sharing as well as the traits of successful engineers. Makerspaces and fabrication (fab) labs (what Gibb calls hackerspaces) are physical hubs of the maker culture. Although these trends are clearly important for the United States, this cultural change and open hardware ethos can have dramatic impacts in the developing world. Matthew Rogge, Melissa Menke, and William Hoyle of TechforTrade explain the potential for open source and 3D printing to produce many needed items in low-resource settings, where lack of infrastructure makes local production impractical and high tariffs, unreliable supply chains, and economic instability make importation costly. Saving 90 percent on medical or scientific tools is nice in my lab, for instance, but it literally saves lives in a developing world context. The issue concludes with an op-ed by Tom Callaway, a senior software engineer at Red Hat, Inc., an open source software company with revenue over $2 billion last year (up 15 percent year over year). What makes this business accomplishment so impressive is that all of the company’s software products are available for free. Although old ways of thinking demand that companies secure a monopoly and certainly not give away “intellectual property” for free, Red Hat’s success comes from offering its customers support, collaboration, control, and a high-quality product. Tom argues that the proven open source software mentality is porting to hardware, opening up incredible opportunities for humanity. He concludes, “open source and open innovation work…. They also empower society and make it possible to push the limits of what is possible. When the barriers to collaboration are lifted, people can accomplish incredible things.” As all of the articles show, open source tools in the hands of this and future generations of engineers will be incredible indeed.
This paper outlines the evolution of additive manufacturing technology, culminating in 3D printing, and presents a vision of how this evolution is affecting existing global value chains in production. In particular, we bring up questions about how this new technology can affect the geographic span and density of global value chains. Potentially, wider adoption of this technology has the potential to partially reverse the trend towards global specialization of production systems into elements that may be geographically dispersed and closer to the end-users (localization). This leaves the question of whether in some industries diffusion of 3D printing technologies may change the role of multinational enterprises as coordinators of global value chains by inducing the engagement of a wider variety of firms, even households.
Purpose – The purpose of this paper is to present novel modifications to a RepRap design that increase RepRap capabilities well beyond just fused filament fabrication. Open-source RepRap 3-D printers have made distributed manufacturing and prototyping an affordable reality. Design/methodology/approach – The design is a significantly modified derivative of the Rostock delta-style RepRap 3-D printer. Modifications were made that permit easy and rapid repurposing of the platform for milling, paste extrusion and several other applications. All of the designs are open-source and freely available. Findings – In addition to producing fused filament parts, the platform successfully produced milled printed circuit boards, milled plastic objects, objects made with paste extrudates, such as silicone, food stuffs and ceramics, pen plotted works and cut vinyl products. The multi-purpose tool saved 90-97 per cent of the capital costs of functionally equivalent dedicated tools. Research limitations/implications – While the platform was used primarily for production of hobby and consumer goods, research implications are significant, as the tool is so versatile and the fact that the designs are open-source and eminently available for modification for more purpose-specific applications. Practical implications – The platform vastly broadens capabilities of a RepRap machine at an extraordinarily low price, expanding the potential for distributed manufacturing and prototyping of items that heretofore required large financial investments. Originality/value – The unique combination of relatively simple modifications to an existing platform has produced a machine having capabilities far exceeding that of any single commercial product. The platform provides users the ability to work with a wide variety of materials and fabrication methods at a price of less than $1,000, provided users are willing to build the machine themselves.
The recent introduction of RepRap (self-replicating rapid prototyper) 3-D printers and the resultant open source technological improvements have resulted in affordable 3-D printing, enabling low-cost distributed manufacturing for individuals. This development and others such as the rise of open source-appropriate technology (OSAT) and solar powered 3-D printing are moving 3-D printing from an industry based technology to one that could be used in the developing world for sustainable development. In this paper, we explore some specific technological improvements and how distributed manufacturing with open-source 3-D printing can be used to provide open-source 3-D printable optics components for developing world communities through the ability to print less expensive and customized products. This paper presents an open-source low cost optical equipment library which enables relatively easily adapted customizable designs with the potential of changing the way optics is taught in resource constraint communities. The study shows that this method of scientific hardware development has a potential to enables a much broader audience to participate in optical experimentation both as research and teaching platforms. Conclusions on the technical viability of 3-D printing to assist in development and recommendations on how developing communities can fully exploit this technology to improve the learning of optics through hands-on methods have been outlined.
Scientists have begun using self-replicating rapid prototyper (RepRap) 3-D printers to manufacture open source digital designs of scientific equipment. This approach is refined here to develop a novel instrument capable of performing automated large-area four-point probe measurements. The designs for conversion of a RepRap 3-D printer to a 2-D open source four-point probe (OS4PP) measurement device are detailed for the mechanical and electrical systems. Free and open source software and firmware are developed to operate the tool. The OS4PP was validated against a wide range of discrete resistors and indium tin oxide (ITO) samples of different thicknesses both pre-and post-annealing. The OS4PP was then compared to two commercial proprietary systems. Results of resistors from 10 to 1 MΩ show errors of less than 1% for the OS4PP. The 3-D mapping of sheet resistance of ITO samples successfully demonstrated the automated capability to measure non-uniformities in large-area samples. The results indicate that all measured values are within the same order of magnitude when compared to two proprietary measurement systems. In conclusion, the OS4PP system, which costs less than 70% of manual proprietary systems, is comparable electrically while offering automated 100 micron positional accuracy for measuring sheet resistance over larger areas.

Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Progress in Additive Manufacturing
Improved Model and Experimental Validation of Deformation in Fused Filament Fabrication of Poly Lactic Acid2018 •
Journal of Prosthetics and Orthotics
Open-Source Three-Dimensional Printable Infant Clubfoot Brace2019 •
Forest Products Journal
Wood Furniture Waste-Based Recycled 3-D Printing Filament2018 •
2019 •
2018 •
Additive Manufacturing
Fab Lab Applications of Large-Area Waste Polymer-based Additive Manufacturing2019 •
2019 •
Additive Manufacturing
Polymer-derived SiOC Replica of Material Extrusion-based 3-D Printed Plastics2019 •
Geriatrics
Economic Potential for Distributed Manufacturing of Adaptive Aids for Arthritis Patients in the U.S2018 •