Academia.eduAcademia.edu

Outline

Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes

2008, Soil Biology and Biochemistry

https://doi.org/10.1016/J.SOILBIO.2008.01.024

Abstract

Current soil enzyme methods measure potential enzyme activities, which are indicative of overall enzyme concentrations. However, they do not provide insight in the actual rates of enzymatically catalyzed reactions under natural in situ conditions. The objectives of this review are to (1) clarify what is being measured by current standard soil enzymology methods; (2) present an overview of the factors that control in situ activities of soil enzymes; and (3) evaluate how emerging technologies and modeling approaches could enhance our understanding of in situ extracellular enzyme activity (EEA). Genomic studies targeting functional genes coding for extracellular enzymes can identify the genetic potential of microbial communities to produce enzymes. Microbial regulation of enzyme production can be assessed with transcriptomic studies of mRNA. Emerging proteomic tools could be used assess the pool sizes, diversity, and microbial source of soil enzymes. New mass-spectrometry approaches can be used to quantify the products of enzymatic degradation. The insights gathered from these approaches will foster improved models of decomposition that explicitly include enzymes and microbial species or functional groups. A comprehensive approach to measuring in situ activity and elucidating the regulation of enzyme production and stabilization is required to advance our understanding of the biochemistry of decomposition.

References (99)

  1. Aber, J.D., Melillo, J.M., McClaugherty, C.A., 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany 68, 2201-2208.
  2. Allison, S.D., 2005. Cheaters, diffusion, and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecology Letters 8, 626-635.
  3. Allison, S.D., 2006. Soil minerals and humic acids alter enzyme stability: implica- tions for ecosystem processes. Biogeochemistry 81, 361-373.
  4. Allison, S.D., Jastrow, J.D., 2006. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biology & Biochemistry 38, 3245-3256.
  5. Allison, S.D., Vitousek, P.M., 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry 37, 937-944.
  6. Alvarez, M., Gieseke, A., Godoy, R., Ha ¨rtel, S., 2006. Surface-bound phosphatase activity in ectomycorrhizal fungi: a comparative study between a colorimet- ric and a microscope-based method. Biology and Fertility of Soils 42, 561-568.
  7. Aneja, M.K., Sharma, S., Munch, J.C., Schloter, M., 2004. RNA fingerprintingda new method to screen for differences in plant litter degrading microbial commu- nities. Journal of Microbiological Methods 59, 223-231.
  8. Benndorf, D., Balcke, G.U., Harms, H., von Bergen, M., 2007. Functional meta- proteome analysis of protein extracts from contaminated soil and groundwater. ISME Journal 1, 224-234.
  9. Blackwood, C.B., Waldrop, M.P., Zak, D.R., Sinsabaugh, R.L., 2007. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differ- ences among forest types but no impact of nitrogen deposition. Environmental Microbiology 9, 1306-1316.
  10. Blum, G., Mullins, S.R., Keren, K., Fonovic, M., Jedeszko, C., Rice, M.J., Sloane, B.F., Bogyo, M., 2005. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chemical Biology 1, 203-209.
  11. Blum, G., von Degenfeld, G., Merchant, M.J., Blau, H.M., Bogyo, M., 2007. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched ac- tivity-based probes. Nature Chemical Biology 3, 668-677.
  12. Burns, R.G., 1982. Enzyme-activity in soild location and a possible role in microbial ecology. Soil Biology & Biochemistry 14, 423-427.
  13. Burns, R.G., Dick, R.P., 2002. Enzymes in the Environment: Activity, Ecology, and Applications. Marcel Dekker, New York.
  14. Caldwell, B.A., 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 49, 637.
  15. Carreiro, M.M., Sinsabaugh, R.L., Repert, D.A., Parkhurst, D.F., 2000. Microbial en- zyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81, 2359-2365.
  16. Chro ´st, R.J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chro ´st, R.J. (Ed.), Microbial Enzymes in Aquatic Environments. Springer, New York, pp. 29-59.
  17. Coker, J.A., Sheridan, P.P., Loveland-Curtze, J., Gutshall, K.R., Auman, A.J., Brenchley, J. E., 2003. Biochemical characterization of a beta-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. Journal Of Bacteriology 185, 5473-5482.
  18. Criquet, S., Tagger, S., Vogt, G., Iacazio, G., Le Petit, J., 1999. Laccase activity of forest litter. Soil Biology & Biochemistry 31, 1239-1244.
  19. Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon de- composition and feedbacks to climate change. Nature 440, 165-173.
  20. DeForest, J.L., Zak, D.R., Pregitzer, K.S., Burton, A.J., 2004. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal 68, 132-138.
  21. Dettmer, K., Aronov, P.A., Hammock, B.D., 2007. Mass spectrometry-based meta- bolomics. Mass Spectrometry Reviews 26, 51-78.
  22. Di Nardo, C., Cinquegrana, A., Papa, S., Fuggi, A., Fioretto, A., 2004. Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem. Soil Biology & Biochemistry 36, 1539-1544.
  23. Dong, S., Brooks, D., Jones, M.D., Grayston, S.J., 2007. A method for linking in situ activities of hydrolytic enzymes to associated organisms in forest soils. Soil Biology and Biochemistry 39, 2414-2419.
  24. Edwards, R.A., Rodriguez-Brito, B., Wegley, L., Haynes, M., Breitbart, M., Peterson, D.M., Saar, M.O., Alexander, S., Alexander, E.C., Rohwer, F., 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7, 57.
  25. Ekschmitt, K., Liu, M.Q., Vetter, S., Fox, O., Wolters, V., 2005. Strategies used by soil biota to overcome soil organic matter stabilitydwhy is dead organic matter left over in the soil? Geoderma 128, 167-176.
  26. Elsgaard, L., Vinther, F.R., 2004. Modeling of the fine-scale temperature response of arylsulfatase activity in soil. Journal Of Plant Nutrition And Soil Science-Zeits- chrift Fur Pflanzenernahrung Und Bodenkunde 167, 196-201.
  27. Feller, G., 2003. Molecular adaptations to cold in psychrophilic enzymes. Cellular and Molecular Life Sciences 60, 648-662.
  28. Fenner, N., Freeman, C., Reynolds, B., 2005. Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biology & Bio- chemistry 37, 1814.
  29. Ferrer, M., Golyshina, O.V., Chernikova, T.N., Khachane, A.N., Reyes-Duarte, D., Dos Santos, V., Strompl, C., Elborough, K., Jarvis, G., Neef, A., Yakimov, M.M., Timmis, K.N., Golyshin, P.N., 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environmental Microbiology 7, 1996-2010.
  30. Foster, R., 1985. In situ localization of organic matter in soils. Questiones Entomologicae 21, 609-633.
  31. Foster, R., Martin, J.K., 1981. In situ analysis of soil components of biological origin. In: Paul, E.A., Ladd, J.N. (Eds.), Soil Biochemistry. Marcel Dekker, New York, pp. 75-110.
  32. Frankenberger, W.T., Tabatabai, M.A., 1991a. L-asparaginase activity of soils. Biology and Fertility of Soils 11, 6-12.
  33. Frankenberger, W.T., Tabatabai, M.A., 1991b. L-glutaminase activity of soils. Soil Biology & Biochemistry 23, 869-874.
  34. Freeman, C., Nevison, G.B., 1999. Simultaneous analysis of multiple enzymes in environmental samples using methylumbelliferyl substrates and HPLC. Journal of Environmental Quality 28, 1378-1380.
  35. Gallo, M., Amonette, R., Lauber, C., Sinsabaugh, R.L., Zak, D.R., 2004. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microbial Ecology 48, 218.
  36. Gao, H., Yang, Z.K., Gentry, T.J., Wu, L., Schadt, C.W., Zhou, J., 2007. Microarray-based analysis of microbial community RNAs by whole-community RNA amplifica- tion. Applied and Environmental Microbiology 73, 563-571.
  37. Gianfreda, L., Sannino, F., Ortega, N., Nannipieri, P., 1994. Activity of free and im- mobilized urease in soil: Effects of pesticides. Soil Biology & Biochemistry 26, 777-784.
  38. Gruber, D.F., Simjouw, J.P., Seitzinger, S.P., Taghon, G.L., 2006. Dynamics and char- acterization of refractory dissolved organic matter produced by a pure bacterial culture in an experimental predator-prey system. Applied and Environmental Microbiology 72, 4184-4191.
  39. Harder, W., Dijkhuizen, L., 1983. Physiological responses to nutrient limitation. Annual Review of Microbiology 37, 1-23.
  40. Huston, A.L., Krieger-Brockett, B.B., Deming, J.W., 2000. Remarkably low tempera- ture optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environmental Microbiology 2, 383-388.
  41. Joanisse, G.D., Bradley, R.L., Preston, C.M., Munson, A.D., 2007. Soil enzyme in- hibition by condensed litter tannins may drive ecosystem structure and pro- cesses: the case of Kalmia angustifolia. New Phytologist 175, 535-546.
  42. Kandeler, E., 1990. Characterization of free and adsorbed phosphatases in soils. Biology and Fertility of Soils 9, 199-202.
  43. Kim, K.-H., Brown, K.M., Harris, P.V., Langston, J.A., Cherry, J.R., 2007. A proteomics strategy to discover B-glucosidases from Aspergillus fumigatus with two-di- mensional page in-gel activity assay and tandem mass spectrometry. Journal of Proteome Research 6, 4749-4757.
  44. Klonowska, A., Gaudin, C., Fournel, A., Asso, M., Le Petit, J., Giorgi, M., Tron, T., 2002. Characterization of a low redox potential laccase from the basidiomycete C30. European Journal of Biochemistry 269, 6119-6125.
  45. Koch, A.L., 1985. The macroeconomics of bacterial growth. In: Fletcher, M., Floodgate, G.D. (Eds.), Bacteria in their Natural Environments. Academic Press, London, pp. 1-42.
  46. Koch, O., Tscherko, D., Kandeler, E., 2007. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles 21, GB4017, doi:10.1029/ 2007GB002983.
  47. Koroljova-Skorobogatko, O.V., Stepanova, E.V., Gavrilova, V.P., Morozova, O.V., Lubimova, N.V., Dzchafarova, A.N., Jaropolov, A.I., Makower, A., 1998. Purifica- tion and characterization of the constitutive form of laccase from the basidio- mycete Coriolus hirsutus and effect of inducers on laccase synthesis. Biotechnology and Applied Biochemistry 28, 47-54.
  48. Kremer, R.J., 1994. Determination of soil phosphatase-activity using a microplate method. Communications in Soil Science and Plant Analysis 25, 319-325.
  49. Kuznetsova, E., Proudfoot, M., Sanders, S.A., Reinking, J., Savchenko, A., Arrowsmith, C.H., Edwards, A.M., Yakunin, A.F., 2005. Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS Microbiology Reviews 29, 263.
  50. Lacerda, C.M.R., Choe, L.H., Reardon, K.F., 2007. Metaproteomic analysis of a bacte- rial community response to cadmium exposure. Journal of Proteome Research 6, 1145-1152.
  51. Lai, C.M., Tabatabai, M.A., 1992. Kinetic-Parameters Of Immobilized Urease. Soil Biology & Biochemistry 24, 225-228.
  52. LeCleir, G.R., Buchan, A., Hollibaugh, J.T., 2004. Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions. Ap- plied and Environmental Microbiology 70, 6977-6983.
  53. Lee, P.S., Shaw, L.B., Choe, L.H., Mehra, A., Hatzimanikatis, V., Lee, K.H., 2003. Insights into the relation between mRNA and protein expression patterns: II. Experi- mental observations in Escherichia coli. Biotechnology and Bioengineering 84, 834-841.
  54. Lee, Y.B., Lorenz, N., Dick, L.K., Dick, R.P., 2007. Cold storage and pretreatment in- cubation effects on soil microbial properties. Soil Science Society of America Journal 71, 1299-1305.
  55. Loveland, J., Gutshall, K., Kasmir, J., Prema, P., Brenchley, J.E., 1994. Characterization of psychrotrophic microorganisms producing beta-galactosidase activities. Applied and Environmental Microbiology 60, 12-18.
  56. Luis, P., Walther, G., Kellner, H., Martin, F., Buscot, F., 2004. Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biology & Biochemistry 36, 1025-1036.
  57. Luis, P., Kellner, H., Martin, F., Buscot, F., 2005a. A molecular method to evaluate basidiomycete laccase gene expression in forest soils. Geoderma 128, 18.
  58. Luis, P., Kellner, H., Zimdars, B., Langer, U., Martin, F., Buscot, F., 2005b. Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microbial Ecology 50, 570-579.
  59. Marx, M.C., Wood, M., Jarvis, S.C., 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology & Biochemistry 33, 1633-1640.
  60. McClaugherty, C.A., Linkins, A.E., 1990. Temperature responses of enzymes in two forest soils. Soil Biology & Biochemistry 22, 29-33.
  61. Meentemeyer, V., 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59, 465-472.
  62. Melillo, J.M., Aber, J.D., Muratore, J.F., 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621-626.
  63. Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., Fry, B., Nadelhoffer, K.J., 1989. Carbon and nitrogen dynamics along the decay continuum plant litter to soil organic matter. Plant and Soil 115, 189-198.
  64. Metcalfe, A.C., Krsek, M., Gooday, G.W., Prosser, J.I., Wellington, E.M.H., 2002. Mo- lecular analysis of a bacterial chitinolytic community in an upland pasture. Applied and Environmental Microbiology 68, 5042-5050.
  65. Michaelis, L., Menten, M.L., 1913. Die kinetik der invertin wirkung. Biochemische Zeitschrift 49, 334-336.
  66. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538-544.
  67. Michel, K., Matzner, E., 2003. Response of enzyme activities to nitrogen addition in forest floors of different C-to-N ratios. Biology and Fertility of Soils 38, 102-109.
  68. Moorhead, D.L., Sinsabaugh, R.L., 2006. A theoretical model of litter decay and microbial interaction. Ecological Monographs 76, 151-174.
  69. Nannipieri, P., 2006. Role of stabilised enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. In: Nannipieri, P., Smalla, K. (Eds.), Nucleic Acids and Proteins in Soil. Springer, Berlin, pp. 75-94.
  70. Nannipieri, P., Ceccanti, B., Cervelli, S., Sequi, P., 1978. Stability and kinetic properties of humus-urease complexes. Soil Biology & Biochemistry 10, 143-147.
  71. Nannipieri, P., Ceccanti, B., Bianchi, D., 1988. Characterization of humus-phospha- tase complexes extracted from soil. Soil Biology & Biochemistry 20, 683-691.
  72. Nannipieri, P., Sequi, P., Fusi, P., 1996. Humus and enzyme activity. In: Piccolo, A. (Ed.), Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam, pp. 293-328.
  73. Nannipieri, P., Kandeler, E., Ruggiero, P., 2002. Enzyme activities and microbiological and biochemical processes in soil. In: Burns, R.G., Dick, R.P. (Eds.), Enzymes in the Environment. Marcel Dekker, New York, pp. 1-33.
  74. Parham, J.A., Deng, S.P., 2000. Detection, quantification and characterization of beta- glucosaminidase activity in soil. Soil Biology & Biochemistry 32, 1183-1190.
  75. Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Science Society of America Journal 51, 1173-1179.
  76. Pelletier, A., Sygush, J., 1990. Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Applied and Environmental Microbiol- ogy 56, 844-848.
  77. Pflug, W., 1982. Effect of clay minerals on the activity of polysaccharide cleaving soil enzymes. Zeitschrift fu ¨r Pflanzenerna ¨hrung und Bodenkunde 145, 493-502.
  78. Prokushkin, A.S., Gleixner, G., McDowell, W.H., Ruehlow, S., Schulze, E.-D., 2007. Source-and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia. Global Biogeochemical Cycles 21, GB4003, doi:10.1029/2007GB002938.
  79. Quiquampoix, H., Servagent-Noinville, S., Baron, M., 2002. Enzyme adsorption on soil mineral surfaces and consequences for the catalytic activity. In: Burns, R.G., Dick, R.P. (Eds.), Enzymes in the Environment. Marcel Dekker, New York, pp. 285-306.
  80. Ram, R.J., VerBerkmoes, N.C., Thelen, M.P., Tyson, G.W., Baker, B.J., Blake, R.C., Shah, M., Hettich, R.L., Banfield, J.F., 2005. Community proteomics of a natural microbial biofilm. Science 308, 1915-1920.
  81. Roesch, L.F., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K.M., Kent, A.D., Daroub, S.H., Camargo, F.A.O., Farmerie, W.G., Triplett, E.W., 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME Journal 1, 283-290.
  82. Saiya-Cork, K.R., Sinsabaugh, R.L., Zak, D.R., 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry 34, 1309-1315.
  83. Schimel, J.P., Weintraub, M.N., 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology & Biochemistry 35, 549-563.
  84. Setala, H., McLean, M.A., 2004. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139, 98-107.
  85. Sharma, S., Szele, Z., Schilling, R., Munch, J.C., Schloter, M., 2006. Influence of freeze- thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Applied and Environmental Microbiology 72, 2148-2154.
  86. Sinsabaugh, R.L., 1994. Enzymatic analysis of microbial pattern and process. Biology and Fertility of Soils 17, 69-74.
  87. Sinsabaugh, R.L., Moorhead, D.L., 1994. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biology & Biochemistry 26, 1305-1311.
  88. Skujins, S., 1976. Extracellular enzymes in soil. CRC Critical Reviews in Microbiology 6, 383-421.
  89. Tate, R.L., 2002. Microbiology and enzymology of carbon and nitrogen cycling. In: Burns, R., Dick, R. (Eds.), Enzymes in the Environment: and Applications. Dekker, New York, pp. 227-248.
  90. Taylor, B.R., Parkinson, D., Parsons, W.F.J., 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70, 91-104.
  91. Trasar-Cepeda, C., Gil-Sotres, F., Leiros, M.C., 2007. Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biology & Biochemistry 39, 311-319.
  92. Uchiyama, T., Abe, T., Ikemura, T., Watanabe, K., 2005. Substrate-induced gene- expression screening of environmental metagenome libraries for isolation of catabolic genes. Nature Biotechnology 23, 88-93.
  93. Waldrop, M.P., Balser, T.C., Firestone, M.K., 2000. Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry 32, 1837-1846.
  94. Weintraub, M.N., Schimel, J.P., 2005. Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biology & Biochemistry 37, 1469-1475.
  95. Williamson, N., Brian, P., Wellington, E.M.H., 2000. Molecular detection of bacterial and streptomycete chitinases in the environment. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 78, 315-321.
  96. Wirth, S.J., Wolf, G.A., 1992. Microplate colourimetric assay for endoacting cellulase, xylanase, chitinase, 1,3-beta-glucanase and amylase extracted from forest soil horizons. Soil Biology & Biochemistry 24, 511-519.
  97. Worm, J., Jensen, L.E., Hansen, T.S., Søndergaard, M., Nybroe, O., 2000. Interactions between proteolytic and non-proteolytic Pseudomonas fluorescens affect protein degradation in a model community. FEMS Microbiology Ecology 32, 103-109.
  98. Yergeau, E., Kang, S., He, Z., Zhou, J., Kowalchuk, G.A., 2007. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME Journal 1, 163-179.
  99. Yun, J., Ryu, S., 2005. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microbial Cell Factories 4 Article 8.