The Moderna and Comirnaty B4-5 vaccines do not contain nitrogen and phosphorus (energy dispersive X-ray spectroscopy), so they do not contain mRNA. Nanotechnology in covid vaccines
Sign up for access to the world's latest research
Abstract
The fact that covid vaccines contain nanoparticles obtained by nanotechnology is officially stated . As there are many uncertainties about the covid vaccines, including their composition, I have decided to carry out in October 2023 an analysis of the Moderna vaccine as well as the Comirnay-Omicron B4-5 vaccine with the help of an electron microscopy professional. The analysis consisted of scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). We found that both products, Moderna and Comirnaty-Omicron B4-5 vaccines, contain mainly carbon, oxygen, silicon atoms, without identifying nitrogen and phosphorus atoms , as would be normal if these products contained mRNA. Given the differences between the composition identified by EDX and the declared composition of the covid vaccines, urgent pressure for an official analysis of these products is necessary.
Related papers
Encyclopedia, 2021
COVID-19 mRNA vaccines contain synthetic mRNA sequences encoded for the Spike proteins expressed on the surface of SARS-CoV-2, and utilize the host cells to produce specific antigens that stimulate both humoral and cellular immunities. Lipid nanoparticles are essential to facilitate the intracellular delivery of the mRNA to its action site, the ribosome, to fully exert its effect.
Despite the worldwide success of mRNA-LNP Covid-19 vaccines, the nanoscale structure of these formulations is still poorly understood. To fill this gap, we used a combination of atomic force microscopy (AFM), dynamic light scattering (DLS), transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM) and the determination of LNP pH gradient to analyze the nanoparticles (NPs) in BNT162b2 (Comirnaty), comparing it with the well characterized pegylated liposomal doxorubicin (Doxil). Comirnaty NPs had similar size to Doxil, however, unlike Doxil liposomes, wherein the stable ammonium and pH gradient enables accumulation of14C-methylamine in the intraliposomal aqueous phase, Comirnaty LNPs lack such pH gradient in spite of the fact that the pH 4, at which LNPs are prepared, is raised to pH 7.2 after loading of the mRNA. Mechanical manipulation of Comirnaty NPs with AFM revealed soft, compliant structures. The sawtooth-like force transitions seen during ca...
Frontiers for Young Minds
Nanoparticles are tiny containers that scientists create to carry molecules. How tiny? Let us say that a nanoparticle is about 100,000 times smaller than a single M&M candy. Scientists use special nanoparticles to treat specific diseases. For example, the mRNA vaccines that protect people from COVID-19 contain nanoparticles that are packed with mRNA molecules from the virus. In this article, we will answer some interesting questions: What are nanoparticles made of and how do they work? What are the mRNA molecules that are packed inside the nanoparticles of the COVID-19 vaccine? How do scientists create mRNA vaccines, and how do they protect us from COVID-19?
Clinical Complementary Medicine and Pharmacology, 2021
Arhiv za farmaciju, 2022
In the light of the recommended application of the third dose, both public and professional community would benefit from a detailed report on the technological advances behind the developed messenger ribonucleic acid (mRNA) based COVID-19 vaccines. Although many vaccine developers are yet to reveal their precise formulations, it is apparent they are founded on nanotechnology platforms similar to the one successfully used for registered drug OnpattroTM (INN: patisiran). Optimal encapsulation of mRNA requires the presence of four lipids: an ionizable cationic lipid, a polyethylene-glycol (PEG)-lipid, a neutral phospholipid and cholesterol. Together with other excipients (mainly buffers, osmolytes and cryoprotectives), they enable the formation of lipid nanoparticles (LNPs) using rapid-mixing microfluidic or T-junction systems. However, some limitations of thermostability testing protocols, coupled with the companies' more or less cautious approach to predicting vaccine stability, ...
Nanomedicine Journal, 2021
Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) caused an outbreak in Wuhan, China in December 2019, and right after that SARS-COV-2 spreads around the world infecting millions of people worldwide. This virus belongs to wide range virus family and cause moderate to severe signs in patients, the Sars-COV-2, can spread faster than others between humans and leads to severe outbreak. Recently researchers succeed to develop various vaccines including inactivated or attenuated viral vaccines as well as subunit vaccines to prevent SARS-COV-2 infection. Nanotechnology is advantageous for the design of vaccines since nano scale materials could benefit the delivery of antigens, and could be used as adjuvants to potentiate the response to the vaccines. Indeed, among various vaccines entered clinical trials, there are mRNA-based vaccine designed based on lipid nanoparticles. Herein, we summarized SARS-COV-2 structure, pathogenesis, therapeutic approaches and some COVID-19 vaccine c...
This review paper highlights the use of nanotechnology as a new opportunities for the development of novel strategies in terms of prevention, detection, diagnosis and treatment of severe acute respiratory syndrome coronavirus (SARS-CoV-2). Coronavirus (SARS-CoV-2) disease (covid-19) infection is characterized by severe respiratory diseases, including bronchiolitis, pneumonia, high fever, throat infections, and common cold. SARS-CoV-2 infection is not limited to any particular class, and people of all age groups are vulnerable. The coronavirus is airborne mainly transmitted through droplets from the infected person or symptomatic patients or from asymptomatic people. The transmission of SARS-CoV-2 from one human to another human is much faster, which has already resulted in its spread around the world and led the WHO to declare the covid-19 outbreak as a global pandemic. These outbreaks have tested the limits of healthcare systems and have posed serious questions about management using conventional therapies and diagnostic tools. Therefore, new controlling measures to overcome this covid-19 pandemic is the development of a suitable and cost effective vaccines and therapeutics. Hence nanotechnology platforms in the development of vaccines and therapeutic drugs have been developed based on nanomedicine, and have the potential to become innovative alternatives for overcoming COVID-19. A nano-based (mRNA-lipid nanoparticle) formulation for SARS-CoV-2 vaccine and therapeutics is being developed as a delivery vehicle and found successful.
Current Clinical Microbiology Reports
Purpose of Review Along with the continued in silico-based studies for drug designing and repurposing followed by the corresponding cell culture studies, the ongoing clinical trials with some completed regarding finding the drug efficacy and the vaccine development against the severe acute respiratory coronavirus 2 (SARS-CoV-2) have been the most functional and indispensable issue during the current COVID-19 pandemic within 2020 and onward. The present review attempted to figure out the update on this effective vaccine and discussed the other promising vaccines. Recent findings A range of investigations on the SARS-CoV-2 genomics, on its similarities with SARS-CoV-1, and with the Middle East respiratory syndrome coronavirus (MERS-CoV) have been accomplished and the host immune dodging mechanisms by the SARS-CoV-2 have been unraveled which in turn led the scientists around the world to work rigorously on the vaccine development. Working with various vaccine platforms so far revealed the efficacy of the mRNA-1273 vaccine as the most effective one as resulted through the clinical trials which resulted in 95% positive output. Summary Although currently commercialized mRNA-1273 vaccine appears to be effective, still several points are to be pondered regarding the sustainability of vaccine efficacy against the rising variants of SARS-CoV-2.
Nanomedicine, 2021
As the current COVID-19 pandemic illustrates, vaccination is the most powerful method of disease prevention and public confidence in vaccines depends on their safety and efficacy. The information gathered in the current pandemic is growing at an accelerated pace. Both the key vital protein DNA/RNA messengers and the delivery carriers are the elements of a puzzle including their interactions with the immune system to suppress SARS-CoV-2 infection. A new nano-era is beginning in the vaccine development field and an array of side applications for diagnostic and antiviral tools will likely emerge. This review focuses on the evolution of vaccine carriers up to COVID-19-aimed nanoparticles and the immune-related adverse effects imposed by these nanocarriers.
GEANINA HAGIMA